
1

GSOC Proposal: MIT APP INVENTOR, 2024

Block Editor Projects: Improve the Blockly workspace

multi-select plugin

Lakshya Shishir Khandelwal

Indian Institute of Technology, Roorkee

Uttarakhand, India



2

Table of Contents

SN Content Page No.

1. About Me 3-4

2. Past Projects/Experience 5

3. Project Overview 6

4. Issues 6

5. Implementation Details and
Deliverables

6-9

6. Timeline 10-12

7. Post GSoC Goals 12

8. Development Environment 12

9. Time Commitment 12



3

About Me

Personal Info

● Name: Lakshya Shishir Khandelwal

● Email: lakshyashishir1@gmail.com

● GitHub: https://github.com/lakshyashishir

●Mentors: Evan Patton, Songlin Jiang

● Location: India

● Time zone: IST (UTC +05:30)

Educational Info

● University: Indian Institute of Technology, Roorkee

●Major: Geophysical Technology

● Current Year: Sophomore (2nd) (Expected Graduation: 2027)

● Degree: Integrated Master of Technology (Integrated MTech)

Background

Engaging in hackathons and course projects, I've cultivated my skills in software

development. My journey began with MIT App Inventor in 8th grade, and I've

since built numerous projects with it, even becoming a finalist in Google Code

to Learn. My interests span web development, AI, and machine learning.

Currently, I'm a developer at SDSLabs (Student Technical Group), focusing on

React, JavaScript, and Python for machine learning projects.

Programming Languages

React.js, JavaScript, Node.js, Python, Go



4

Why MIT App Inventor?

My deep bond with MIT App Inventor began at the start of my programming

journey, igniting my curiosity and enabling me to bring ideas to life through app

development. Throughout high school, it became pivotal in my projects,

fostering creativity and fueling my passion for innovation.

As I join Google Summer of Code, I'm eager to give back to the community by

reconnecting with MIT App Inventor and contributing to its success. I aim to be

an active member, empowering others to explore app development.

(Some projects I built on MIT App Inventor in my school time)

Why me?

I possess extensive experience in contributing to open-source projects and

have a solid background in front-end development. My proficiency spans React,

JavaScript, Node.js, and AI&ML with years of coding experience in these

languages. Moreover, I have experience working in SDSLabs where we build

production-level applications from scratch and thus I know the technical

difficulties that might arise and how to deal with them.

Achievements

Google Code to Learn 2019, 2020, 2021: Finalist and Winner (x2)

Syntax Error 2023: Finalist



5

Winter of Code 2023: Accepted

Past Projects /Experience

● Quizio - I contributed to developing the front end for quiz-taking

and checking processes, as well as debugging the backend. This

project provided hands-on experience with a large-scale CRUD

application built using JavaScript, ReactJS, and MongoDB

Frontend : https://github.com/sdslabs/Helios

Backend : https://github.com/sdslabs/Athena

● LeSo - An online legal service provider. I single-handedly

developed the entire product and assisted in its launch. My

collaboration with LeSo spanned from July 2023 to February 2022.

Tech Stack: JavaScript, ReactJS, MongoDB

● xPay - xPay is a payment orchestration product. I am an early

member of the team, interning for a month. Tech Stack: Javascript,

Java

● Study Time Management - One of my App Inventor

projects I built in school. Became a finalist in Google Code to Learn

with the same project. Continued to build complex apps on the

platform even after this.

AIA :

https://drive.google.com/file/d/1lkrgvlF6FXrdRElAY1rXY2CGH9s_�Y

f/view?usp=sharing

https://github.com/sdslabs/Helios
https://github.com/sdslabs/Athena
https://drive.google.com/file/d/1lkrgvlF6FXrdRElAY1rXY2CGH9s_fkYf/view?usp=sharing
https://drive.google.com/file/d/1lkrgvlF6FXrdRElAY1rXY2CGH9s_fkYf/view?usp=sharing


6

Project Details

Overview

This GSOC proposal aims to enhance the Blockly workspace multi-select plugin

for MIT App Inventor by implementing two crucial improvements. Firstly, I

intend to integrate the IDragger introduced in Blockly 11; currently, the

multiselect plugin uses a custom block dragger for dragging multiple blocks.

Once it's implemented it will make the plugin easier to maintain in the future.

I will also focus on resolving the transparent SVG issue associated with

DragSelect and Blockly, ensuring a visually cohesive interface and improving

user interaction within the workspace.

Issues (175 Hrs)

I am picking up two enhancements for the project Improve the Blockly

workspace multi-select plugin. Hence this is a medium 175 Hrs project.

1. Use IDragger introduced in Blockly 11 for multi-select dragging

#39

2. Fix the known transparent SVG issue related to DragSelect and

Blockly

Implementation Details and Deliverables

https://github.com/mit-cml/appinventor-sources/wiki/Google-Summer-of-Code-2024#improve-the-blockly-workspace-multi-select-plugin
https://github.com/mit-cml/appinventor-sources/wiki/Google-Summer-of-Code-2024#improve-the-blockly-workspace-multi-select-plugin
https://github.com/mit-cml/workspace-multiselect/issues/39
https://github.com/mit-cml/workspace-multiselect/issues/39
https://github.com/mit-cml/workspace-multiselect?tab=readme-ov-file#known-issues
https://github.com/mit-cml/workspace-multiselect?tab=readme-ov-file#known-issues


7

In this section, I will be going over the main implementation steps of this

project.

1. Custom Draggable

To enhance the multiselect plugin, we will implement a custom IDraggable that

encapsulates all selected elements. It can delegate drag operations to the

individual elements.



8

This implementation ensures compatibility with other plugins like the scroll

options plugin, as the custom IDraggable provides a seamless integration

without requiring additional modifications to the multiselect plugin.

2. Selection

Currently, the multiselect plugin's selection mechanism is limited, randomly

selecting one of the blocks and passing it to Blockly.common.setSelected. To

improve this, we will modify the selection process to ensure that the

MultiselectDraggable is correctly passed to setSelected, facilitating proper

handling by the Gesture and subsequent interaction with the IDragger.

In this implementation, when multiple blocks are selected, the

handleMultiselectSelection function is called. This function creates an instance

of MultiselectDraggable, encapsulating all selected blocks. Then, it passes this

instance to setSelected, ensuring that the Gesture can properly interact with

the IDragger for seamless multi-selection dragging.

3. Fixing transparent SVG issues related to DragSelect and

Blockly



9

The multiselect plugin currently relies on DragSelect to determine block

selection. However, DragSelect listens to SVG path elements, treating them as

rectangles with transparent areas. This can cause issues with irregularly shaped

blocks. To address this, a patch was introduced (v0.1.4) that includes a filter

function. This function, called filterParent, removes parent blocks when their

child blocks are selected. It iterates through selected blocks, identifying cases

where a parent block fully covers its child's selection area. Such parent blocks

are then removed from the selection. This filtering logic is applied within the

filterSelected function of dragSelect_, ensuring that only child blocks remain

selected. This approach resolves issues with invisible rectangles, ensuring

correct selection behavior within the Blockly workspace.

A proper fix to this issue can be adding functionality to the `BlockSVG` class in

Blockly to determine whether a given point lies inside the SVG representation

of a block. This functionality would be facilitated by the addition of an

`isPointInside` method within the `BlockSVG` class.

When called, the `isPointInside` method would take the coordinates of the

point in question and transform them into local coordinates relative to the SVG

representation of the block. This transformation would involve applying any

necessary adjustments, such as accounting for the workspace offset or

considering the current zoom level, through the `transformToSvgCoordinates`

method.

Once the coordinates are transformed, the method would calculate the

bounding box of the SVG representation using the `getBoundingBox` method.

By determining the minimum and maximum coordinates along the x and y

axes, the bounding box would define the boundaries of the SVG.

Finally, the `isPointInside` method would compare the transformed

coordinates against the bounding box. If the coordinates fall within the

boundaries of the SVG, the method would return `true`, indicating that the

point is inside the block. Otherwise, it would return `false`. This approach

would provide a more accurate means of determining point containment

within block SVG compared to relying on external libraries like DragSelect.



10

Project Timeline
Following is the project timeline for my GsoC. I would be taking up the 175

hour format.

Pre GSoC Period

April 2nd - May 3rd
● Contribute to solving more issues related to
Blocky Editor. Complete any incomplete PR. I will
try picking up issues related to Multiselect Plugin (if
any).

Community Bonding Period



11

May 4th - May 28th

● Get to know more about the App Inventor
community.
● Discuss methods of implementation with my
mentor.
● Identify more relevant parts in the codebase, and
study the multi-select plugin code.

Coding Period

June 9th - June 22nd

● Begin implementing the custom IDraggable,
as outlined here in issue #39.

● Develop methods for startDrag, drag, and
endDrag to handle dragging operations for
multiple selected elements.

● Test the initial implementation of the
custom IDraggable class to ensure it
properly wraps all selected elements and
delegates drag operations.

June 23rd - July 7th

● Address any issues or bugs encountered
during testing and debugging.

● Work on passing the MultiselectDraggable
to setSelected instead of a single selected
block to ensure proper handling by the
IDragger.

July 8th - July 12th ● Evaluation 1 Phase

https://github.com/mit-cml/workspace-multiselect/issues/39


12

July 13th - July 27th

● Perform comprehensive testing of the
plugin and performance improvements.

● Understand the transparent SVG issue, and
fix that is introduced in v0.1.4.

● Discuss with mentors for possible solutions
and implementation.

July 28th - Aug 10th
● Work on the transparent SVG issue.
● Address any issues or bugs encountered

during testing and debugging.

Aug 10th - Aug 28th

● Document the implementation process,
including any modifications made to the
plugin.

● Prepare a final report summarizing the
work completed, challenges faced, and
outcomes achieved during the
implementation of Tasks 1 and 3.

● Review the timeline with mentors and seek
feedback for further improvements or
adjustments if needed.

Post GSoc Goals

I have learned a lot and was introduced to a new ecosystem by contributing to

the MIT App Inventor and even after the GSoC period ends, I plan on

contributing to this organization, by adding to my past projects and working on

open issues.

Development Environment



13

To build and code MIT App Inventor, I will use Windows with a manual app

inventor setup.

Time Commitment

4th May-10th May: College end Semester examinations (10-15 hours/week)

10th May-15th July: Summer Vacation (35 hours/week)

16th July-28th August: College Resumes (30 hours/week)

As for other commitments or vacation plans during the summer, I have none,

so my focus will remain solely on this project. I will regularly update all

community members on my status and ensure transparency in the project.

I am 100% dedicated to MIT App Inventor and have absolutely no plans to
submit proposals to any other organizations.


